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Abstract. The aim of this communication is to apply the augmented-space recursion technique
coupled with the orbital-peeling method, which was introduced by us earlier (Dasgupta I, Saha T
and Mookerjee A 1995Phys. Rev.B 51 3413) as a computationally powerful methodology, to
study the phase stability of PdRh alloys.

1. Introduction

Alloys are multiphase systems and it is of great interest to the condensed-matter physicist
to find out when and under what conditions a particular phase becomes favourable for a
given alloy system. This study of phase formation requires accurate approximations to the
configuration energy as well as the use of statistical models to obtain the configurational
entropy. Over the past few years it has become possible to combineab initio quantum
mechanical electronic structure calculations for alloy energetics with statistical mechanical
models for the configurational entropy so as to perform a phase-formation study without
the use of adjustable and experimentally determined parameters.

One approach essentially involves the expansion of the alloy configuration energy
in terms of the concentration deviations at each site from the uniform background of a
perfectly disordered solid solution and truncation of the expansion series depending upon the
accuracies required. One may interpret the process of phase ordering and segregation as the
loss of stability of the uniform perfectly disordered background against static concentration
waves (the Fourier transform of the concentration deviations at each site). The stability
limit of the concentration waves, i.e., the temperature at which this instability first sets in,
is determined by the vanishing of the second derivative of the free energy. The concept
of the stability limit, analogous to the critical point in higher-order transitions, is generally
extended into metastable regions (below first-order transition lines) defining the so-called
ordering spinodal.

We have recently developed a scheme [1] for the calculation of the alloy configurational
energy based on the method of augmented-space recursion (ASR) [2] coupled with the
orbital-peeling technique [3]. Our scheme is similar to other methods based on embedding
clusters in an effective medium (ECM). The calculation involves the description of the
electronic structure of the components as well as averaging over different configurations of
the system. It is precisely in this averaging scheme that different methods based on the ECM
differ from one another. In the CPA-ECM [4] the averaging is done within the framework
of the single-site coherent potential approximation. In the direct configuration averaging
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(DCA) [5] the averaging is done directly by summing up over a finite number of different
random configurations. The CPA, although generally successful, has all the drawbacks
of a single-site mean-field theory, neglecting clustering and short-ranged ordering effects,
which may be significant near a phase boundary. In the DCA, on the other hand, since
averaging is done by brute force, in principle one can never be sure whether sufficiently
many configurations have been sampled or not—in particular, the ones with high probability
weightings. However, the ASR technique provides a convenient means of configuration
averaging which is not restricted by the above limitations and which systematically includes
the most probable configurations with the correct weightings, so we may ensure that the
moments of the density of states up to a predetermined order areexactlyreproduced [1].

In the present communication, our aim will be apply the ASR orbital-peeling method
for the study of phase segregation in PdRh alloy systems. We shall also apply mean-field
approximation for the entropy contribution to obtain the instability temperatures.

2. Methodology

It has been shown [4] that the configuration energy for a binary alloy AxB1−x may be
expanded as

E({ni}) = V (0) +
N∑
i=1

V
(1)
i δxi + (1/2)

N∑
i,j=1

V
(2)
ij δxi δxj + · · ·. (1)

Hereni takes the value 1 or 0 according to whether the sitei is occupied by an A atom
or not. The concentration of A atoms is thenx = 〈ni〉 andδxi = ni − x. The coefficients
V (0), V (1)i , V (2)ij are the effective renormalized cluster interactions (renormalized in the sense
that all possible scatterings off clusters of a definite size embedded in an average medium
are included).

The renormalized effective pair interactions (EPI) express the correlation between two
sites and are the most dominant quantities in the analysis of phase stability. The single-
site interaction, though volume and concentration dependent, is structure insensitive and is
usually not considered in stability analysis. We will retain terms up to pair interactions in
the configuration energy expansion. Higher-order interactions may be included for a more
accurate and complete description.

The effective pair interaction can be expressed as follows:

V
(2)
ij = EAAij + EBBij − EABij − EBAij (2)

whereEIJij is the average energy of the disordered alloy in which the speciesI andJ are
embedded at the sitesi andj respectively. It gives the interchange energy associated with
two sites embedded in an otherwise disordered medium. In the linearized density functional
approximation the total energy of the solid consists of two terms: the band-structure energy
EBS and the electrostatic contributionEES which includes Coulomb repulsion of ions and
the correction for double counting in the band-structure term. It is usually assumed that
for energy differences of the type involved in the definition of the EPI, the electrostatic
contributions approximately cancel one another and one is left principally with the band-
structure contribution. This assumption has been shown to be justified for a number of
alloy systems. Thus what is needed is to calculate the band-structure energies with fixed
occupancies of the sitesi andj in an otherwise completely disordered lattice.
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Considering only the band energy contribution, the EPI can be written in a convenient
form in terms of the generalized phase shifth(E) as

V
(2)
ij = −

∫ EF

−∞
h(E) dE

with

h(E) = (1/π)Imm log

{
det〈GAA〉 det〈GBB〉
det〈GAB〉 det〈GBA〉

}
(3)

where〈· · ·〉 indicates configuration averaging over all sites except the sitesi and j where
the embedding takes place.

The orbital-peeling method gives an efficient method for directly obtaining the EPI
without going through the large cancellations implied in the defining equation. The
orbital-peeling method has been described at some length in earlier studies [1, 9]. We
shall not repeat that description once again, but refer readers to the earlier studies for
details. We employ the augmented-space recursion coupled with the linearized muffin-tin
orbitals method [6] (the TB-LMTO-ASR method) for a first-principles determination of the
configuration-averagedpeeledGreen functions〈GIJ

k 〉ii , whereGIJ
k = (zI −HIJ

k )−1, where
HIJ
k is the random Hamiltonian with the sitesi and j occupied by atoms of the typeI

and J , and k − 1 rows and columns related to the angular momenta associated with the
site i deleted (or peeled off) (k = 1, . . . ,9). The EPI are then given in terms of the zeros
and poles of these Green functions. These zeros and poles are obtained directly from the
continued-fraction coefficients which are the output of the TB-LMTO-ASR method.

Finally, a few comments on the TB-LMTO-ASR method are in order.

(i) The augmented-space theorem gives theexactconfiguration-averaged Green function
and the only approximation involved is that of terminating the continued-fraction expansion
of the Green function in the recursion method. Detailed estimates of the various termination
errors exist (see [12]). We may therefore keep the errors due to the termination within
prescribed error limits. This necessitates good computational resources being at our disposal.
However, we have further used the point group symmetries of the full augmented space of
the homogeneously disordered binary solid to drastically reduce the rank of the irreducible
subspace on which the effective recursion takes place. It is this that allows us to obtain
accurate results with moderate computational facilities. Moreover, since recursions in
different irreducible subspaces do not mix, the different recursions can be done in parallel
on different CPU.

(ii) The LDA self-consistency is obtained within the ASR. This takes into account crucial
effects like charge transfer on alloying. To systematize the calculation, we first carry out the
TB-LMTO-CPA method fully self-consistently, then use the converged potential parameters
to begin the ASR self-consistency loop. In practice this cuts down the long LDA iteration
times considerably, as, at the very start, most of the charge transfer is taken care of in a
single-site mean-field sense.

3. Calculation of the instability temperatures

As mentioned in the introduction, the study of phase formation requires accurate
approximations to the configurational energy as well as the use of statistical models to
obtain the configurational entropy. The configurational energy within the pair interaction
can be represented in Fourier space as the product of the Fourier transforms of the effective
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pair interactionV (k) and that of the pair correlation functionQ(k):

E ' (N/2)
∑
k

V (k)Q(k)

whereN is the number of atoms.
Minimization of E will naturally occur for states of order characterized by maxima in

theQ(k) pair correlation spectrum located in the regions of the absolute minima ofV (k).
Consequently, much can be predicted about the types of ordering reaction to be expected
from a study of the shape ofV (k)—particular, from a search of its absolute minima (the
so-called special or Lifshitz points). At these special points,

∇kV (k) = 0. (4)

This was pointed out by Lifshitz [7] and Khatchaturyan [8]. Different types of ordered
structure can be related directly to the minima ofV (k).

In other words, given the knowledge of concentration wave vectors, one can readily
predict the most stable ordered structure of the system at low temperatures. This is
comparable to the knowledge derived from studies like those based on x-ray, electron
and neutron diffraction. A peak at the0 point, k = (000), indicates phase separation,
while a peak at the X point,k = (100), in a fcc lattice suggests ordering in the Cu3Au- or
CuAu-ordered structures. Peaks away from special points may correspond to the formation
of long-period superstructures. A well-known example is provided by the CuPd alloys.

Within a simple mean-field approximation, the stability temperatureT0 can be obtained
in the following way.

If we add the expression for the dominant quadratic term in the average energy to
that of the configurational entropy under the simple mean-field approximation we obtain an
expression for the free energy:

F =
∑
i,j

V
(2)
ij (xi − x)(xj − x)+ κBT

∑
i

[xi ln xi + (1− xi) ln (1− xi)]

wherexi is the concentration of the species A at theith site andx is the average concentration
of that species. If we define a configuration variableγ 0

i as〈δxi〉0 (the symbol〈· · ·〉0 denotes
microcanonical averaging), which is the variable relevant to the stability analysis, then the
harmonic term in the Taylor expansion of the above free energy is

F (2) = (N/2)
∑
k

0(k)F (k)0(k)

where0(k) is the Fourier transform ofγ 0
i andF(k) = κBT + x(1− x)V (k).

The stability of a solid solution with respect to a small-amplitude concentration wave
of a given wave vectork is guaranteed as long asF(k) is positive definite. Instability sets
in whenF(k) vanishes:

F(k) = κBT0+ x(1− x)V (k) = 0. (5)

It appears from the above expression that under a simple mean-field approximation the
spinodal is always a parabola in the(T , x) phase diagram, symmetric aboutx = 0.5. It
is the concentration dependence of the effective pair interactions which brings about the
asymmetry.
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4. Results and discussion

The PdRh alloy system provides a convenient test case for the application of the
methodology because of its particularly simple phase diagram, which consists of only
liquid and fcc solid-solution phases. It is one of the few alloy systems that does not
show polymorphism and there is relatively little transfer of charge or size disparity between
the atoms. Application of d-band-like arguments for PdRh alloys with almost filled d bands
gives a clustering tendency at low temperatures.

Figure 1. The nearest-neighbour pair interactionV1 versus energy for PdxRh1−x alloys: (a)
x = 0.25; (b) x = 0.5; and (c)x = 0.75. Vertical lines mark the Fermi energies.

Figure 1 shows the plot of nearest-neighbour effective pair interactions for the alloys
Pd75Rh25, Pd50Rh50 and Pd25Rh75 as functions of the band-filling energy†. We note that
the plot is dominated by the negative value of the nearest-neighbour pair interaction. In
figure 2 we plot the effective pair interactions at the Fermi energy up to the sixth-nearest
neighbour for the 50–50 PdRh alloy. This shows that the pair interactions in PdRh decay
rapidly as functions of the neighbour distance and the dominant interactionV1‡ is negative.
In a magnetic analogy, this would correspond to a ferromagnetic interaction. In an alloy,
this means that constituent atoms prefer to be surrounded with atoms of their own kind. In
other words, the alloy will tend to phase separate and will exist as a mixture of two phases.

In table 1 we quote the numerical values of the pair interactions up to fourth-nearest
neighbours as obtained from the KKR-CPA-GPM (Turchiet al [9]), using the grand
canonical DCA (Wolvertonet al [10]) and from the present methodology. We note that the
agreement of the numerical values from the different methodologies is reasonable and better

† Care must be taken here since different papers define pair energies with slightly different factors and some
include ‘per spin’ while others do not. For comparison, all numbers have been reduced to the same definition and
units.
‡ Vn = V (2)ij whereri andrj arenth-nearest neighbours of each other.
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Figure 2. Vn as a function ofn for the Pd50Rh50 alloy system.

Table 1. Effective pair interactions in mRyd/atom for various distances between the pairs for
a 50–50 PdRh alloy. The TB-LMTO-DCA values are taken from Wolvertonet al [10] and the
KKR-GPM values from Turchiet al [9].

Pair interaction TB-LMTO-DCA KKR-GPM TB-LMTO-ASR

V1 −0.764 −0.85 −0.80
V2 ' 0 −0.05 −0.02
V3 ' 0 −0.12 0.1
V4 ' 0 ' 0 ' 0

than that for other alloy systems [1]. This may be attributed to the fact that since PdRh
is a simple system, in the context of the smaller charge transfers and degree of disorder
present between the constituents, the difference between different methodologies may not
be significant. A systematic study of the effect of using various alloy Hamiltonians on
the numerical values of the effective pair interactions for PdRh alloys has been made by
Wolvertonet al [10]. The starting alloy potential parameters were made consistent with the
alloy Wigner–Seitz radius by applying the volume derivative correction. Thus the potential
parameters, to start with, will contain the information on the concentration, which will be
found to be important for the desired asymmetry of the spinodal curve (to be discussed later).
The nearest-neighbour pair interaction calculation for the alloy Hamiltonian parametrized
with TB-LMTO calculations in which Pd and Rh are each at their own equilibrium lattice
constants has also been carried out. In such a scheme the potential parameters do not
bear the concentration dependence. This calculation has been found to give larger negative
values for the nearest-neighbour pair interactions for each concentration, as compared with
the earlier scheme. For the 50–50 alloyV1 is found to be−2.71 mRyd/(atom spin) in
the latter scheme as compared with the value of−2.6 mRyd/(atom spin) obtained in the
systematic study of Wolvertonet al [10].

We have calculatedV (k) by Fourier transformation spanning six nearest-neighbour
shells. This method contrasts favourably with the direct calculation ofV (k) in k-space and
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Figure 3. TheV (k) surface for Pd50Rh50 on thekz = 0 plane.

Figure 4. The spinodal curve for PdRh. The points indicate calculated values while the solid
line is the cubic-spline fit through these points.

is justified by the fast convergence ofVn with shell number as shown in figure 2. In figure
3 we plot theV (k) surface for the Pd50Rh50 alloy on the planekz = 0. The minimum at the
0 point indicates a clustering instability. In figure 4 we plot the stability limit temperatures
for x = 0.1, 0.25, 0.5, 0.75 and 0.9 (x is the concentration of Pd in the alloy).

The points outline a roughly parabolic curve: the spinodal. We note that the instability
temperature atx = 0.25 is larger than that atx = 0.75. This is in agreement with
experimental observation of the nature of the miscibility gap giving the phase boundary
between the solid-solution phase and the phase-separated phase. In terms of the ECI, the
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physical reason for the observed asymmetry can be understood in the following way: pure
Rh has a smaller equilibrium volume than Pd. The potential parameters of the TB-LMTO
Hamiltonian which contain information on the concentration are consistent with the alloy
Wigner–Seitz radius. This decreases linearly from the Pd-rich side to the Rh-rich side,
making the nearest-neighbour interaction (the dominant one in the determination of the
stability limit) more attractive on the Rh-rich side.

The maximum point in the spinodal curve which corresponds to the maximum
temperature of the miscibility gap turns out to be 1380 K, which is 190 K higher than
the experimentally predicted value [11]. The overestimation is contributed to the entropy
estimate which is a simple mean-field one and always gives elevated estimates of transition
temperatures. Furthermore, neglect of the phononic contribution to the entropy also leads
to a rise in the calculated temperature.
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